40 research outputs found

    On some Graphs with a Unique Perfect Matching

    Full text link
    We show that deciding whether a given graph GG of size mm has a unique perfect matching as well as finding that matching, if it exists, can be done in time O(m)O(m) if GG is either a cograph, or a split graph, or an interval graph, or claw-free. Furthermore, we provide a constructive characterization of the claw-free graphs with a unique perfect matching

    Aligned Drawings of Planar Graphs

    Get PDF
    Let GG be a graph that is topologically embedded in the plane and let A\mathcal{A} be an arrangement of pseudolines intersecting the drawing of GG. An aligned drawing of GG and A\mathcal{A} is a planar polyline drawing Γ\Gamma of GG with an arrangement AA of lines so that Γ\Gamma and AA are homeomorphic to GG and A\mathcal{A}. We show that if A\mathcal{A} is stretchable and every edge ee either entirely lies on a pseudoline or it has at most one intersection with A\mathcal{A}, then GG and A\mathcal{A} have a straight-line aligned drawing. In order to prove this result, we strengthen a result of Da Lozzo et al., and prove that a planar graph GG and a single pseudoline L\mathcal{L} have an aligned drawing with a prescribed convex drawing of the outer face. We also study the less restrictive version of the alignment problem with respect to one line, where only a set of vertices is given and we need to determine whether they can be collinear. We show that the problem is NP-complete but fixed-parameter tractable.Comment: Preliminary work appeared in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Drawing Planar Graphs with Few Geometric Primitives

    Get PDF
    We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let nn denote the number of vertices of a graph. We show that trees can be drawn with 3n/43n/4 straight-line segments on a polynomial grid, and with n/2n/2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with (8n17)/3(8n-17)/3 segments on an O(n)×O(n2)O(n)\times O(n^2) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n/23n/2 edges on an O(n)×O(n2)O(n)\times O(n^2) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only (5n11)/3(5n - 11)/3 arcs. This is significantly smaller than the lower bound of 2n2n for line segments for a nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017

    Extending Upward Planar Graph Drawings

    Full text link
    In this paper we study the computational complexity of the Upward Planarity Extension problem, which takes in input an upward planar drawing ΓH\Gamma_H of a subgraph HH of a directed graph GG and asks whether ΓH\Gamma_H can be extended to an upward planar drawing of GG. Our study fits into the line of research on the extensibility of partial representations, which has recently become a mainstream in Graph Drawing. We show the following results. First, we prove that the Upward Planarity Extension problem is NP-complete, even if GG has a prescribed upward embedding, the vertex set of HH coincides with the one of GG, and HH contains no edge. Second, we show that the Upward Planarity Extension problem can be solved in O(nlogn)O(n \log n) time if GG is an nn-vertex upward planar stst-graph. This result improves upon a known O(n2)O(n^2)-time algorithm, which however applies to all nn-vertex single-source upward planar graphs. Finally, we show how to solve in polynomial time a surprisingly difficult version of the Upward Planarity Extension problem, in which GG is a directed path or cycle with a prescribed upward embedding, HH contains no edges, and no two vertices share the same yy-coordinate in ΓH\Gamma_H

    Intersection Graphs of L-Shapes and Segments in the Plane

    Get PDF
    An L-shape is the union of a horizontal and a vertical segment with a common endpoint. These come in four rotations: ⌊,⌈,⌋ and ⌉. A k-bend path is a simple path in the plane, whose direction changes k times from horizontal to vertical. If a graph admits an intersection representation in which every vertex is represented by an ⌊, an ⌊ or ⌈, a k-bend path, or a segment, then this graph is called an ⌊-graph, ⌊,⌈-graph, B k -VPG-graph or SEG-graph, respectively. Motivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics, 108(1):365–372, 1992], stating that every ⌊,⌈-graph is a SEG-graph, we investigate several known subclasses of SEG-graphs and show that they are ⌊-graphs, or B k -VPG-graphs for some small constant k. We show that all planar 3-trees, all line graphs of planar graphs, and all full subdivisions of planar graphs are ⌊-graphs. Furthermore we show that all complements of planar graphs are B 19-VPG-graphs and all complements of full subdivisions are B 2-VPG-graphs. Here a full subdivision is a graph in which each edge is subdivided at least once

    Threshold-coloring and unit-cube contact representation of planar graphs

    Full text link
    In this paper we study threshold-coloring of graphs, where the vertex colors represented by integers are used to describe any spanning subgraph of the given graph as follows. A pair of vertices with a small difference in their colors implies that the edge between them is present, while a pair of vertices with a big color difference implies that the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. Variants of the threshold-coloring problem are related to well-known graph coloring and other graph-theoretic problems. Using these relations we show the NP-completeness for two of these variants, and describe a polynomial-time algorithm for another. © 2015 Elsevier B.V

    On edge intersection graphs of paths with 2 bends

    Get PDF
    An EPG-representation of a graph G is a collection of paths in a grid, each corresponding to a single vertex of G, so that two vertices are adjacent if and only if their corresponding paths share infinitely many points. In this paper we focus on graphs admitting EPG-representations by paths with at most 2 bends. We show hardness of the recognition problem for this class of graphs, along with some subclasses. We also initiate the study of graphs representable by unaligned polylines, and by polylines, whose every segment is parallel to one of prescribed slopes. We show hardness of recognition and explore the trade-off between the number of bends and the number of slopes. © Springer-Verlag GmbH Germany 2016

    The Complexity of Drawing Graphs on Few Lines and Few Planes

    Full text link
    It is well known that any graph admits a crossing-free straight-line drawing in R3\mathbb{R}^3 and that any planar graph admits the same even in R2\mathbb{R}^2. For a graph GG and d{2,3}d \in \{2,3\}, let ρd1(G)\rho^1_d(G) denote the minimum number of lines in Rd\mathbb{R}^d that together can cover all edges of a drawing of GG. For d=2d=2, GG must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For d{2,3}d\in\{2,3\}, we prove that deciding whether ρd1(G)k\rho^1_d(G)\le k for a given graph GG and integer kk is R{\exists\mathbb{R}}-complete. - Since NPR\mathrm{NP}\subseteq{\exists\mathbb{R}}, deciding ρd1(G)k\rho^1_d(G)\le k is NP-hard for d{2,3}d\in\{2,3\}. On the positive side, we show that the problem is fixed-parameter tractable with respect to kk. - Since RPSPACE{\exists\mathbb{R}}\subseteq\mathrm{PSPACE}, both ρ21(G)\rho^1_2(G) and ρ31(G)\rho^1_3(G) are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to ρ21\rho^1_2 or ρ31\rho^1_3 sometimes require irrational coordinates. - Let ρ32(G)\rho^2_3(G) be the minimum number of planes in R3\mathbb{R}^3 needed to cover a straight-line drawing of a graph GG. We prove that deciding whether ρ32(G)k\rho^2_3(G)\le k is NP-hard for any fixed k2k \ge 2. Hence, the problem is not fixed-parameter tractable with respect to kk unless P=NP\mathrm{P}=\mathrm{NP}

    Minimal Obstructions for Partial Representations of Interval Graphs

    Full text link
    Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem. In this paper, we characterize the minimal obstructions which make partial representations non-extendible. This generalizes Lekkerkerker and Boland's characterization of the minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying algorithm for partial representation extension

    Locally Constrained Homomorphisms on Graphs of Bounded Treewidth and Bounded Degree

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree
    corecore